APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2015

MA101 CALCULUS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer ALL Questions

1. Find the derivative of $\tanh \sqrt{1+x^{2}} 2$
2. Examine the convergence of the series $\sum_{k=1}^{\infty} \frac{k^{k}}{k!} 3$
3. Convert the rectangular coordinates $(0,4, \sqrt{3})$ to cylindrical and spherical coordinates2
4. Find equations of the paraboloid $z^{2}=x^{2}+y^{2}$ in cylindrical and spherical coordinates
5. If $\mathrm{U}=\frac{x^{3}+y^{3}}{x-y}$, Find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$
6. The length, width, and height of a rectangular box are measured with an error of at most 5%. Use a total differential to estimate the maximum percentage error that results if these quantities are used to calculate the diagonal of the box.
7. Find $\nabla z, i f, z=4 x-10 y$.
8. A particle moves on the curves $\mathrm{x}=2 t^{2}, \mathrm{y}=t^{2}-4 \mathrm{t}, \mathrm{z}=3 \mathrm{t}-5$ where t is the time . Find the component of acceleration at the time $\mathrm{t}=1$ in the direction $\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$.3
9. Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x \quad 2$
10. Find the Jacobian of the transformations $\mathrm{x}=\mathrm{uv}$ and $\mathrm{y}=\frac{u}{v}$
11. Find curl \vec{F} at the point $(1,-1,1)$ where

$$
\begin{equation*}
\mathrm{F}^{\vec{\prime}}=\mathrm{xz}^{3} \hat{\imath}-2 \mathrm{x}^{2} \mathrm{yz} \hat{\jmath}+2 \mathrm{yz}{ }^{4} \hat{k} \tag{2}
\end{equation*}
$$

12. The function $\phi(x, y, z)=\mathrm{xy}+\mathrm{yz}+\mathrm{xz}$ is a potential for the vector field \vec{F}, find the vector field \vec{F}.

PART B

MODULE 1

Answer ANY TWO Questions

13. Find the Maclaurin series for $\cos x$ and also find $\cos 1$, calculate the absolute error 5
14. Prove that $\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),-1<\mathrm{x}<1$
15. Show the series $\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}$ converges and $\sum_{k=1}^{\infty}(-1)^{k}$ diverges

MODULE 2

Answer ANY TWO Questions

16. Find the natural domain of the following functions.
i. $f(x, y)=3 x^{2} \sqrt{y}-1$
ii. $\quad f(x, y)=\log \left(x^{2}-y\right)$
17. Evaluate $\underset{(x, y) \rightarrow(-1,2)}{L t} \frac{x^{2}+y}{x^{2}+y^{2}}$. State the properties used in the evaluation.
18. Find the traces of the surface $x^{2}+y^{2}-z^{2}=0$ in the planes $\mathrm{x}=2$ and $\mathrm{y}=1$ and identify the same.

MODULE 3

Answer ANY TWO Questions

19. Find maximum and minimum values of

$$
f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x
$$

20. Let $\mathrm{L}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ denote the local linear approximation to $f(x, y, z)=\frac{x+y}{y+z}$ at the point $\mathrm{P}(-1,1,1)$. Compare the error in approximating f by L at $\mathrm{Q}(-0.99,0.99,0.01)$ with the distance between P and Q .
21. $z=3 x y^{2} z^{3} ; y=3 x^{2}+2 ; z=\sqrt{x-1}$ Find $\frac{d w}{d x}$ and $\frac{d w}{d y}$

MODOULE 4

Answer ANY TWO Questions

22. Given a circular helix $\mathrm{r}(\mathrm{t})=\operatorname{acost} \hat{\imath}+a \sin t \hat{\jmath}+b t \hat{k}, \mathrm{a}, \mathrm{b}>0,0 \leq t \leq \infty$, find its arc length and unit tangent vector.
23. The position vector at any time t of a particle moving along a curve is $\vec{r}(t)=t \hat{\imath}+$ $t^{2} \hat{\jmath}+t^{3} \hat{k}$.

Find the scalar and vector tangential and normal component of the acceleration at time $\mathbf{t}=1$
24. Find the parametric equation of the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$ at $(1,1,2)$

MODULE 5

Answer ANY THREE Questions
25. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region in the positive quadrant for which $\mathrm{x}+\mathrm{y} \leq 1$
26. Change the order of integration in $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}} d x d y$ and hence evaluate the same. 5
27. Find the area bounded by the Parabolas $y^{2}=4 x$ and $x^{2}=-(y / 2)$. 5
28. Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ the planes $y+z=3$ and $z=0$
29. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y)} \sin \left(\frac{\pi y}{x+y}\right) d x d y$ by means of the transformation $u=x+y, v=y$

MODULE 6

Answer ANY THREE Questions

30. Use Green's theorem to evaluate $\oint_{C}(x \cos y d x-y \sin x d y)$ where C is the square with vertices $(0,0),(\pi, 0),(\pi, \pi)$ and $(0, \pi)$
31. Use Stoke's theorem to evaluate the integral $\oint_{c} \vec{F} . d r$, where $\vec{F}=x y \hat{\imath}+y z \hat{\jmath}+z x \hat{k}$; C is the triangle in the plane $x+y+z=1$ with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ with a counter clockwise orientation looking from the first octant towards the origin.
32. Use Gauss Divergence Theorem to find the outward flux of vector field $\vec{F}(x, y, z)=x^{3} i+y^{3} j+z^{3} k$ across the surface of the region enclosed by circular cylinder $x^{2}+y^{2}=9$ and the plane $z=0$ and $z=2$
33. Use Gauss Divergence Theorem to find the outward flux of vector field $\vec{F}(x, y, z)=x^{3} i+y^{3} j+z^{3} k$ across the surface of the region enclosed by circular cylinder $x^{2}+y^{2}=9$ and the plane $z=0$ and $z=2$
34. Find the work done by the force field $\vec{F}(x, y)=\left(e^{x}-y^{3}\right) \hat{\imath}+\left(\cos y+x^{3}\right) \hat{\jmath}$ on a particle that travels once around the unit circle $x^{2}+y^{2}=1$ in the counter clockwise direction.
