В B7035

Reg No.: Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Total Pages: 2

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: EE303

Course Name: LINEAR CONTROL SYSTEMS (EE)

Max. Marks: 100 **Duration: 3 Hours**

Graph sheet and semi-log sheets will be supplied. Assume any missing data.

PART A

Answer all questions, each carries 5 marks.

- 1 Distinguish between open loop system and closed loop system. (5)
- 2 Obtain the transfer function of an AC tachogenerator. (5)
- A unity feedback system has a open loop transfer function of $G(s) = \frac{10}{(s+1)(s+2)}$. 3 (5)Determine the steady state error for unit step input.
- What is angle criterion referred to root locus? 4
- (5)
- 5 Define gain margin and phase margin of a system. (5)
- 6 Determine the phase cross over frequency of a system with open loop transfer (5) function $G(s) = \frac{1}{s(1+2s)(1+s)}$.
- 7 Write a short note on Nichols chart. (5)
- 8 Explain the Nyquist stability criterion. (5)

Answer any two full questions, each carries 10 marks.

- Obtain the force voltage analogy of a general mechanical translation system. 9 (5)
 - Find the overall transfer function of the signal flow graph shown in Figure (1) (5) using Mason's gain formula.

- 10 a) Obtain the transfer function of an armature controlled DC motor. (5)
 - The forward path transfer function of a unity feedback control system is given by (5) $G(s) = \frac{2}{s(s+3)}$. Obtain an expression for unit step response of the system.
- a) Explain the effect of time constant on the speed of time response of a control (4) 11 system.
 - Obtain the electrical analogous of the mechanical system shown in Figure (2). (6) Use force-voltage analogy.

Page 1 of 2

B B7035

PART C

Answer any two full questions, each carries 10 marks.

12 a) For a unity feedback control system with the open loop transfer function (5) $G(s) = \frac{10(s+5)}{s^2(s+1)}$

Find the position, velocity and acceleration error coefficients.

b) Using Routh-Hurwitz criterion determine the relation between K and T so that unity feedback control system whose open loop transfer function given below is stable. (5)

$$G(s) = \frac{K}{s[s(s+20)+T]}$$

- 13 a) Explain the effect of addition of poles and zeros on the nature of root locus. (4)
 - b) Sketch the root locus for the open loop transfer function of a unity feedback (6) system given below,

$$G(s) = \frac{K}{s(s+1)(s+3)}$$

14 a) Determine the stability of the system whose overall transfer function is given (5) below

$$G(s) = \frac{2s+5}{s^5+1.5s^4+2s^3+4s^2+5s+10}$$

b) Explain the nature of time response of a second order system according to the location of roots of the characteristic equations.

PART D

Answer any two full questions, each carries 10 marks.

- 15 a) Explain any three frequency domain specifications of a control system. (3)
 - b) The open loop transfer function of system is given by

$$G(s) = \frac{10}{s(0.4s+1)(0.1s+1)}$$

(7)

Draw the bode plot and obtain the gain and phase cross over frequencies.

- 16 a) Explain the steps involved in obtaining the polar plot. (3)
 - b) The open loop transfer function of a unity feedback system is given by (7)

$$G(s) = \frac{1}{s(s+1)(2s+1)}$$

Sketch the polar plot and determine the gain margin and phase margin.

- 17 a) Define the phase cross over frequency and gain cross over frequency of a system. (5)
 - b) Differentiate between minimum phase and non-minimum phase system with (5) suitable examples.
