	SUBJECT	SUBJECT		
SEMESTER	CODE	NAME	CO No.	COURSE OUTCOMES
			CO1	Solve systems of linear equations, diagonalize matrices and characterise quadratic forms.
				compute the partial and total derivatives and maxima and minima of multivariable
			CO2	functions
				compute multiple integrals and apply them to find areas and volumes of geometrical
			CO3	shapes, mass and centre of gravity of plane laminas
		LINEAR		perform various tests to determine whether a given series is convergent, absolutely
		ALGEBRA	CO4	convergent or conditionally convergent
		AND		determine the Taylor and Fourier series expansion of functions and learn their
	MAT 101	CALCULUS	CO5	applications.
			CO1	Compute the quantitative aspects of waves and oscillations in engineering systems.
				Apply the interaction of light with matter through interference, diffraction and identify
			CO2	these phenomena in different natural optical processes and optical instruments.
			~ ~ ~	Analyze the behaviour of matter in the atomic and subatomic level through the principles
			CO3	of quantum mechanics to perceive the microscopic processes in electronic devices.
			GO (Classify the properties of magnetic materials and apply vector calculus to static
			CO4	magneticfields and use Maxwell's equations to diverse engineering problems
	DUT 100	ENGINEERIN	005	Apply the comprehended knowledge about laser and fibre optic communication systems
	PHT 100	G PHYSICSA	<u>C05</u>	in various engineering applications
			COI	Recall principles and theorems related to rigid body mechanics
			CO2	Identify and describe the components of system of forces acting on the rigid body
			a a	Apply the conditions of equilibrium to various practical problems involving different
			<u>CO3</u>	force system.
		ENGINEERIN	CO4	Choose appropriate theorems, principles or formulae to solve problems of mechanics.
		G	~ ~ ~	Solve problems involving rigid bodies, applying the properties of distributed areas and
	EST 100	MECHANICS	CO5	masses
			001	Recall the role of civil engineer in society and to relate the various disciplines of Civil
		BASICS OF	COI	Engineering.
		CIVIL &	000	Explain different types of buildings, building components, building materials and
S1	EST 120	MECHANICAL	CO2	building construction

	ENGINEERIN	CO3	Describe the importance, objectives and principles of surveying.
	G		Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and
		CO4	ramps
			Discuss the Materials, energy systems, water management and environment for green
		CO5	buildings.
		CO6	Analyse thermodynamic cycles and calculate its efficiency
		CO7	Illustrate the working and features of IC Engines
		CO8	Explain the basic principles of Refrigeration and Air Conditioning
		CO9	Describe the working of hydraulic machines
		CO10	Explain the working of power transmission elements
		CO11	Describe the basic manufacturing, metal joining and machining processes
		CO1	Define and Identify different life skills required in personal and professional life
			Develop an awareness of the self and apply well-defined techniques to cope with
		CO2	emotions and stress.
			Explain the basic mechanics of effective communication and demonstrate these through
		CO3	presentations.
		CO4	Take part in group discussions.
		CO5	Use appropriate thinking and problem solving techniques to solve new problems
HUT 101	LIFE SKILLS	CO6	Understand the basics of teamwork and leadership
			Apply modern instruments like CRO, strain gauge to measure the basic physical
			quantities viz. frequency and amplitude of a wave pattern, strain etc. Carryout
		CO1	measurement of wave pattern in a stretched string and the corresponding frequency
		COI	Values using a Melde's string apparatus.
		CO^{2}	object etc. by forming Newton's rings pattern and an air wedge fringe pattern
		02	Carryout the measurement of wavelength by diffraction of plane transmission grating
	ENGINEERIN	CO3	and the spectra formed by a monochromatic beam of light and a laser.
	G PHYSICS		Determine the wavelength of a laser beam using the plane transmission
PHL 120	LAB	CO4	grating.Measurement of numerical aperture of an optic fibre and evaluate the properties

				of
				a solar cell and LED through itsI-Vcharacteristics.
				Determine the velocity of ultrasonic waves in liquid using ultrasonic
				diffractometer.Compare the magnetic moment of various magnets and determine the
			CO5	magnetic flux density using deflection/vibration Magnetometer.
			CO1	Name different devices and tools used for civil engineering measurements
			CO2	Explain the use of various tools and devices for various field measurements
				Demonstrate the steps involved in basic civil engineering activities like plot
				measurement, setting out operation, evaluating the natural profile of land, plumbing
			CO3	and undertaking simple construction work.
				Choose materials and methods required for basic civil engineering activities like field
			CO4	measurements, masonry work and plumbing.
			CO5	Compare different techniques and devices used in civil engineering measurements
				Identify Basic Mechanical workshop operations in accordance with the material and
			CO6	objects
		CIVIL &		Apply appropriate Tools and Instruments with respect to the mechanical workshop
		MECHANICAL	CO7	trades
	ESL 120	WORKSHOP	CO8	Apply appropriate safety measures with respect to the mechanical workshop trades
			CO1	Apply the concept of vector functions and learn to work with conservative vector field
		VECTOR		Apply computing integrals of scalar and vector field over surfaces in three-dimensional
		CALCULUS.	CO2	space.
		DIFFERENTIA		Solve homogeneous and non-homogeneous linear differential equation with constant
		L EOUATIONS	CO3	coefficients
		AND	CO4	Apply Laplace transforms to solve physical problems arising in engineering
	MAT 102 TRANSFORM	TRANSFORMS	CO5	Apply Fourier transforms to solve physical problems arising in engineering
				Apply the basic concepts of electrochemistry and corrosion to explore its possible
			CO1	applications in various engineering fields.
		ENGINEERIN		Understand various spectroscopic techniques like UV-Visible, IR, NMR and its
S2	CYT 100	G CHEMISTRY	CO2	applications.

			Apply the knowledge of analytical method for characterizing a chemical mixture or a
		002	compound. Understand the basic concept of SEM for surface characterisation of
		003	nanomaterials
		CO4	Learn about the basics of stereochemistry and its application. Apply the knowledge of
		C04 C05	Study various types of water treatment methods to develop skills for treating wastewater
		C03	Study various types of water treatment methods to develop skins for treating wastewater
		COI	Draw the projection of points and lines located in different quadrants
		CO2	positions
		CO3	Draw sectional views and develop surfaces of a given object
		CO4	Prepare pictorial drawings using the principles of isometric and perspective projections to visualize objects in three dimensions.
	ENGINEERIN	CO5	Convert 3D views to orthographic views and vice versa
EST 110	G GRAPHICS	CO6	Obtain multiview projections and solid models of objects using CAD tools
		CO1	Apply fundamental concepts and circuit laws to solve simple DC electric and magnetic circuits
	BASIC	CO2	Develop and solve models of magnetic circuits
	ELECTRICAL		Apply the fundamental laws of electrical engineering to solve simple ac circuits in
	ELECTRONIC	CO3	steady state
	S	CO4	Describe working of a voltage amplifier
	ENGINEERIN	CO5	Outline the principle of an electronic instrumentation system
EST 130	G	CO6	Explain the principle of radio and cellular communication
		CO1	Develop vocabulary and language skills relevant to engineering as a profession
		CO2	Analyze, interpret and effectively summarize a variety of textual content
		CO3	Create effective technical presentations
			Discuss a given technical/non-technical topic in a group setting and arrive at
	PROFESSIONA	CO4	generalizations/consensus
	L	CO5	Identify drawbacks in listening patterns and apply listening techniques for specific needs
	COMMUNICA		Create professional and technical documents that are clear and adhering to all the
HUT 102	TION	CO6	necessary conventions

		CO1	Analyze a computational problem and develop an algorithm/flowchart to find its solution
			Develop readable* C programs with branching and looping statements, which uses
		CO 2	Arithmetic, Logical, Relational or Bitwise operators
			Write readable C programs with arrays, structure or union for storing the data to be
		CO 3	processed
			Divide a given computational problem into a number of modules and develop a readable
			multi-function C program by using recursion if required, to find the solution to the
		CO 4	computational problem
			Write readable C programs which use pointers for array processing and parameter
	PROGRAMMI	CO 5	passing
EST 102	NG IN C	CO 6	Develop readable C programs with files for reading input and storing output
			Understand and practice different techniques of quantitative chemical analysis to
		CO1	generate experimental skills and apply these skills to various analyses
			Develop skills relevant to synthesize organic polymers and acquire the practical skill to
		CO2	use TLC for the identification of drugs
			Develop the ability to understand and explain the use of modern spectroscopic
			techniques for analysing and interpreting the IR spectra and NMR spectra of some
	-	CO3	organic compounds
		GO 4	Acquire the ability to understand, explain and use instrumental techniques for chemical
	-	CO4	analysis
		00 <i>5</i>	Learn to design and carry out scientific experiments as well as accurately record and
		005	analyze the results of such experiments
	ENGINEEKIN C CHEMISTRY		Function as a member of a team, communicate effectively and engage in further
CVI 130	G CHEWIISI KY	C06	learning. Also understand now chemistry addresses social, economical and
	LAD	C00	Demonstrate sofety, measures accinct electric sheals
		COI	Demonstrate safety measures against electric snocks.
		CO1	Identify the tools used for electrical wiring, electrical accessories, wires, cables, batteries
		02	and standard symbols.
	A L &	CO^{2}	for wiring simple lighting circuits for domestic buildings
ECI 130	ELECTRONIC	<u> </u>	Lieutific and text excitence de star nie community.
ESL 130	5 WUKKSHOP	004	Identify and test various electronic components

			CO5	Draw circuit schematics with EDA tools
			CO6	Assemble and test electronic circuits on boards
			CO7	Work in a team with good interpersonal skills
		LINEAR	CO1	To equip the students with methods of solving a general system of linear equations.
		ALGEBRA		To familiarize them with the concept of Eigen values and diagonalization of a matrix
		AND	CO2	which have many applications in Engineering.
		COMPLEX		To understand the basic theory of functions of a complex variable and conformal
	MA 201	ANALYSIS	CO3	Transformations.
				Identify and apply operations on discrete structures such as sets, relations and functions
			CO 1	in different areas of computing
			CO 2	Solve problems using counting techniques and combinatorics.
			CO 3	Apply recurrence relations to solve problems in different domains.
		DISCRETE	CO4	Solve problems using algebraic structures.
		COMPUTATIO	CO 5	Verify the validity of an argument using propositional and predicate logic.
		NAL		Construct proofs using direct proof, proof by contraposition, proof by contradiction and
	CS 201	STRUCTURES	CO 6	proof by cases, and by mathematical induction.
				Familiarize number system - representation, addition, subtraction, multiplication and
		-	CO 1	division
				Apply the basic concepts of Boolean algebra for the simplification and implementation
			CO 2	of logic functions using suitable gates namely NAND, NOR etc.
				Design simple Combinational Circuits such as Adders, Subtractors, Code Convertors,
			CO 3	Decoders, Multiplexers, and Magnitude Comparators etc.
				Analyze and Design simple and commonly used Sequential Circuits viz. different types
		SWITCHING	CO4	of Counters, Shift Registers, Serial Adders and Sequence Generators.
		THEORY AND	CO 5	Use Hardware Description Language for describing simple logic circuits
		LOGIC		Explain and illustrate algorithms for addition/subtraction operations on Binary, BCD and
	CS 203	DESIGN	CO 6	Floating Point Numbers
		DATA		Compare different programming methodologies and define asymptotic notations to
S3	CS 205	STRUCTURES	CO1	analyze performance of algorithms.

			Use appropriate data structures like array, linked list, stack and queue to solve real world
		CO2	problems.
		CO3	Represent and manipulate data using nonlinear data structures like Tree and Graph
		CO4	Illustrate and compare various techniques for searching and sorting
		CO5	Illustrate various hashing techniques
		CO1	To understand applications of diodes and transistors
		CO2	To understand working of voltage regulators and FET
			To provide insight into the working, analysis and design of basic analog circuits using
	ELECTRONIC	CO3	BJT and MOSFET
	DEVICES AND	CO4	Ability to analyze different types of operational amplifiers
CS207	CIRCUITS	CO5	Understand different types of integrated circuits.
		CO1	Communicate Effectively
		CO2	Make Effective Presentations
		CO3	Write different types of reports
		CO4	Face Interview and Group Discussion
		CO5	Critically think on a particular problem
		CO6	Solve Problems
		CO7	Work in groups and teams
		CO8	Handle engineering ethics and human values
HS 210	LIFE SKILLS	CO9	Become an effective leader
			Appreciate the importance of structure and abstract data type, and their basic usability in
		CO1	different applications
		CO2	Analyze and differentiate different algorithms based on their time complexity.
		CO3	Implement linear and non-linear data structures using linked lists.
			Understand and apply various data structure such as stacks, queues, trees, graphs, etc. to
		CO4	solve various computing problems
	DATA		Implement various kinds of searching and sorting techniques, and decide when to choose
	STRUCRURES	CO5	which technique
CS 231	LAB	CO6	Identify and use a suitable data structure and algorithm to solve a real world problem

			CO1	Identify basic electronic components design and develop electronic circuits.
			CO2	Design and demonstrate functioning of various discrete analog circuits.
				Be familiar with computer simulation of electronic circuits and how to use it proficiency for
		-	CO3	design and development of electronic circuits.
		ELECTRONIC	CO4	Understand the concept and their application in engineering
	CS 233	CIRCUITS LAB	CO5	Communicate effectively the scientific procedures and explanation in formal technical reports.
				To familiarize the prospective engineers with elementary Principles of Economics and
		_	CO1	Managerial Economics
			~~•	To acquaint the students with tools and techniques that are useful in their profession in
		-	CO2	Managerial Decision Making which will enhance their employability
			~~~	To gain understanding of some Macroeconomic concepts to improve their ability to
		BUSINESS	CO3	understand the business climate
	HS 200	ECONOMICS	CO4	To prepare and understand balance sheet at an elementary level.
		PROBABILITY		To introduce the concept of random variables, probability distributions, specific discrete and
		DISTRIBUTIO		continuous distributions with practical application in various Engineering and social life
		NS,	CO1	situations.
		TRANSFORMS	CO2	To know Laplace and Fourier transforms which has wide application in all Engineering courses.
		AND		
		NUMERICAL	~ ~ ~	
	MA 202	METHODS	CO3	To enable the students to solve various engineering problems using numerical methods
			~ ~ 1	Students will be able to identify the basic structure and functional units of a digital
		-	CO1	computer.
		COMPLITER	CO2	Analyze the effect of addressing modes on the execution time of a program.
		ORGANIZATI	CO3	Design processing unit using the concepts of ALU and control logic design
		ON AND	<b>CO4</b>	Identify the pros and cons of different types of control logic design in processors.
		ARCHITECTU	CO5	Select appropriate interfacing standards for I/O devices.
	CS 202	RE	<b>CO6</b>	Identify the roles of various functional units of a computer in instruction execution.
			CO1	Identify the significance of operating system in computing devices.
		OPERATING		Exemplify the communication between application programs and hardware devices
<b>S4</b>	<b>CS 204</b>	SYSTEMS	<b>CO2</b>	through system calls

			CO3	Compare and illustrate various process scheduling algorithms.
			<b>CO4</b>	Apply appropriate memory and file management schemes.
			CO5	Illustrate various disk scheduling algorithms.
			CO6	Appreciate the need of access control and protection in an operating system.
		OBJECT	CO1	To introduce basic concepts of object oriented design techniques.
		ORIENTED	CO2	To give a thorough understanding of Java language.
		PROGRAMMI	CO3	To provide basic exposure to the basics of multithreading, database connectivity etc.
	CS206	NG	CO4	To impart the techniques of creating GUI based applications
			CO 1	Identify and apply various Linux commands
		FREE AND	CO 2	Develop shell scripts and GUI for specific needs
		<b>OPEN SOURCE</b>	CO 3	Use tools like GIT
		SOFTWARE		Perform basic level application deployment, kernel configuration and installation, packet
	CS 232	LAB	CO 4	management and installation etc.
		-	CO1	define, explain and illustrate the fundumental concepts of databases
				construct an entity relationship model from specifications and to perform the
		-	CO2	transformation of the conceptual model in to corresponding logical data structures
		-	CO3	Model and design a relational database following the design principles
		-	CO4	Develop queries for relational database in the context of practical applications
		PRINCIPLES	~~-	Define ,explain and illustrate fundumental principles of data organization, query
	~~~	OF DATABASE	<u>CO5</u>	optimization and concurrent transaction processing
	CS 208	DESIGN	<u>CO6</u>	Appreciate the latest trends in database
		DIGITAL	CO1	identify and explain the digital ICs and their use in implementing digital circuits
	CS 234	SYSTEMLAB	CO2	design and implement different kinds of digital circuits
			001	Classify formal languages into regular, context-free, context sensitive and unrestricted
		-	COI	languages.
			CO2	Design finite state automata, regular grammar, regular expression and Myhill- Nerode
		I HEUKY UF	02	Design push down automate and context free grammer representations for context free
\$5	CS 301		CO3	languages
55	03 301	T.A.	005	

		CO4	Design Turing Machines for accepting recursively enumerable languages.
		CO5	Understand the notions of decidability and undecidability of problems, Halting problem.
		CO1	Students will be able to distinguish different software into different categories.
			Students will be able to design analyze and implement one pass, two pass or multipass
		CO2	assembler.
		CO3	Students will be able to design analyze and implement loader and linker.
	SYSTEM	CO4	Students will be able to design analyze and implement macro processor.
CS 303	SOFTWARE	CO5	Students will be able to critique the features of morderen editing/ debugging tools.
		CO1	Describe differenI modes of operations of a apical microprocessor nnd microcontroller
			Design nnd develop 8086 assembly langunge programs using sofluare ititerrupts and
		CO2	various assembler directives
	MICROPROCE	CO3	Interface microprocessors with variou s external dmices
	SSOR AND	CO4	Analyze rind compare the fentures of microprocessors and microcontrollers.
	MICROCONTR	CO5	Design mid dmelop assembly lnnguage yrogrnms using 8051microcontroller
CS305	OLLERS		
		CO 1	Identify and list various issues present in the design of a data communication system
			Apply the time domain and frequency domain concepts of signals in data
		CO 2	communication
		CO 3	capacity
			Select and use appropriate signal encoding techniques and multiplexing techniques for a
	DATA	CO 4	given scenario
	COMMUNICA	CO 5	Design suitable error detection and error correction algorithms to achieve error free data
CS 307	TION	05	communication and explain different switching techniques
		CO 1	properties and characterization of graphs and trees
		$\frac{001}{002}$	Use graphs for solving real life problems
		$\frac{002}{002}$	Distinguish between planer and non-planer graphs and solve problems
	СРАРН	005	Distinguish between planar and non-planar graphs and solve problems.
CS 309	THEORY	CO 4	engineering and science.
			ongineering and belenee.

			CO 1	Learn about soft computing techniques and their applications.
			CO 2	Analyze various neural network architectures.
			CO 3	Define the fuzzy systems.
			CO 4	Understand the genetic algorithm concepts and their applications.
		SOFT		Identify and select a suitable Soft Computing technology to solve the problem; construct
	CS 361	COMPUTING	CO 5	a solution and implement a Soft Computing solution
		-	CO1	The students will be able to understand the engineering aspects of design of product
				The students will be able to think innovatively on the development of components,
		-	CO2	products, processes or technologies in the engineering field.
		DEGIGN		The student will be able to analyze the problem requirements and arrive at workable
	CS 341	PROJECT	CO3	design solutions
			~ ~ .	Compare and analyze the cpu scheduling algorithms like FCFS,Round Robin, SJF and
		-	CO1	Priority
		-	CO2	Implement basic memory management scheme like paging
		-	CO3	Implement Synchronization techniques using semaphore.
		_	CO4	Implement bakers algorithm for deadlock avoidance.
		SYSTEM		Implement memory management and page replacement schemes for file allocation and
		SOFTWARE	CO5	organization techniques.
	CS 331	LAB	CO6	Implement system software such as loaders, assemblers and macro processor.
		-	CO1	Design and implement a database for given problem using database design principles
		APPLICATION	CO2	Apply stored programming concepts using cursors and Triggers
		SOFTWARE		Use Graphical user interface, event handling and database connectivity to develop and
		DEVELOPMEN	CO3	deploy applications and applets
	CS 333	T LAB	CO4	Develop medium sized project in a team
				Analyze a given algorithm and express its time and space complexities in asymptotic
		-	CO1	notations.
				Solve recurrence equations using Iteration Method, Recurrence Tree Method and
		DESIGN AND	CO2	Master's Theorem.
		ANALYSIS OF	CO3	Design algorithms using Divide and Conquer Strategy.
S6	CS302	ALGORITHMS	CO4	Compare Dynamic Programming and Divide and Conquer Strategies.

		CO5	Solve Optimization problems using Greedy strategy
			Design efficient algorithms using Back Tracking and Branch Bound Techniques for
		CO6	solving problems.
		CO7	Classify computational problems into P, NP, NP-Hard and NP-Complete.
			Students will be able to explain the concepts and different phases of compilation with
		CO1	compile time error handling
			Students will be able to represent language tokens using regular expressions, context free
		CO2	grammar and finite automata and design lexical analyzet fot a language.
			Students will be able to compare top down with bottom up parsers, and develop
		CO3	appropriate parser to produce parse tree representation of the input.
		CO4	Students will be able to generate intermediate code for statements in high level language.
			Students will be able to design syntax directed translation schemes for a given context
		CO5	free grammar
	COMPILER	~ ~ .	Students will be able to apply optimization techniques to intermediate code and generate
CS 304	DESIGN	CO6	machine code for high level language program.
		CO1	Visualise the different aspects of networks, protocols and network design models
		CO2	Examine various Data Link layer design issues and DataLink protocols
		CO3	Analyse and compare different LAN protocols
		CO4	Compare and select appropriate routing algorithms for a network
	COMPUTER		Examine the important aspects and functions of network layer, transport layer and
CS306	NETWORKS	CO5	application layer in internetworking
		CO1	Identify suitable life cycle models to be used
		CO2	Analyze a problem and identify and define the computing requirements to the problem
			Translate a requirement specification to a design using an appropriate software
		CO3	engineering methodology
	SOFTWARE	CO4	Formulate appropriate testing strategy for the given software system.
	ENGINEERIN		Develop software projects based on current technology, by managing resources
CS 308	G	CO5	economically and keeping ethical values
	PRINCIPLES	CO1	To recall and identify the relavance of management concepts
HS 300	OF	CO2	To discribe, discuss and relate management techniques adopted within an organization.

		MANAGEMEN		To apply management techniques for meeting current and future management challenges
		Т	CO3	faced by an organization.
				To compare the management theories and models critically and to inspect and question
		-	CO4	its validity in the real world.
			~ ~ ~	To access and modify different theories of management so as to relate it to current
		-	CO5	management challenges.
			CO6	To apply principles of management inorder to execute the role as a manager.
		WEB	CO1	To impart the design, development and implementation of Dynamic Web Pages.
		TECHNOLOG	CO2	To develop programs for Web using Scripting Languages.
	CS 368	Y	CO3	To give an introduction to Data Interchange formats in Web
				Develop Assembly Language programs for problem solving using interrupts and
		-	CO1	assembler directives.
		MICROPROCE		Implementation of interfacing of various I/O devices for Microprocessors and
	CS 332	SSOR LAB	CO2	Microcontrollers.
				To introduce Network related commands and configuration files in Linux Operating
		-	CO1	System.
		NETWORK	CO2	To introduce tools for Network Traffic Analysis and Network Monitoring.
		PROGRAMMI	CO3	To practice Network Programming using Linux System Calls
	CS 334	NG LAB	CO4	To design and deploy Computer Networks.
				To assess the comprehensive knowledge gained in basic courses relevent to the branch
		COMPREHENS	CO 1	of study.
	CS 352	IVE EXAM	CO 2	To comprehend the questions asked and answer them with confidence.
		MOBILE	CO1	To impart basic understanding of the wireless communication systems.
	CS 364	COMPUTING	CO2	To expose students to various aspects of mobile and ad-hoc networks.
			CO1	Compare various graphics devices
			CO2	Analyse and implement algorithms for line drawing, circle drawing and polygon filling
			CO3	Apply geometrical transformations on 2D and 3 D objects
			CO4	Analyse and implement algorithms for clipping
		COMPUTER	CO5	Apply various projection techniques on 3D objects
S7	CS 401	GRAPHICS	CO6	Summarize visible surface detection methods

		CO7	Interpret various concepts and basics of image processing
	PROGRAMMI	CO1	To introduce the basic constructs that underlie all programming languages
	NG	CO2	To introduce the basics of programming language design and implementation
CS 403	PARADIGMS	CO3	To introduce the organizational framework for learning new programming languages.
		CO1	Summarize different parallel computer models
		CO2	Analyze the advanced processor technologies
		CO3	Interpret memory hierarchy
		CO4	Compare different multiprocessor system interconnecting mechanisms
	COMPUTER	CO5	Interpret the mechanisms for enforcing cache coherence
	SYSTEM	CO6	Analyze different message passing mechanisms L
	ARCHITECTU	CO7	Analyze different pipe lining techniques
CS 405	RE	CO8	Appraise concepts of multithreaded and data flow architectures
		CO1	Distinguish distributed computing paradigm from other computing paradigms.
		CO2	Identify the core concepts of distributed systwems.
		CO3	Illustrate the mechanism of inter process communication in distributed system.
		CO4	Apply appropriate distributed system principles in ensuring transparency, concurrency and fault tolerance in distributed file system.
	DISTRIBUTED	CO5	Compare the concurrency control mechanisms in distributed transactional environment.
CS 407	COMPUTING	CO6	Outline the need for mutual exclusion and election algorithms in distributed systems.
		CO1	Summarize different classical encryption techniques
		CO2	Identify mathematical l concepts for different cryptographic algorithms
	CRYPTOGRAP	CO3	Demonstrate different cryptographic algorithms for cryptographic algorithms
	HY AND	CO4	Summarize different authentication and digital signatute schemes
	NETWORK		Identify security issues in network, transport and application layers and outline
CS 409	SECURITY	CO5	appropriate security protocols.
	DIGITAL		
00 4/2	IMAGE	CO_1	compare different methods for image acquisition, storage and representation in digital
CS 463	PROCESSING	COT	devices and computers

		<u> </u>	appreciate role of image transforms in representing, highlighting, and modifying image
		CO 2	features
		00.1	interpret the mathematical principles in digital image enhancement and apply them in
		<u>CO 3</u>	spatial domain and frequency domain
		CO 4	apply various methods for segmenting image and identifying image components
		CO 5	summarise different reshaping operations on the image and their practical applications
		CO 6	identify image representation techniques that enable encoding and decoding images
			Able to differentiate various learning approaches, and to interpret the concepts of
		CO1	supervised learning
		CO2	Understand different dimensionality reduction techniques
			Can apply theoretical foundations of decision trees to identify best split and Bayesian
		CO3	classifier to label data points
			Can understand the working of classifier models like SVM, Neural Networks and
		C04	identify classifier model for typical machine learning Applications
			Can identify the state sequence and evaluate a sequence emission probability from a
	MACHINE	C05	given HMM
CS 467	LEARNING	C06	Understand clustering algorithms and identify its applicability in real life problems
			Prepare comprehensive report based on literature survey/Topics related to different
		CO 1	subjects in the semester
		CO 2	Identify the applicability of modern software tools and technology
	SEMINAR AND	CO 3	Deliver presentation based on preparation
	PROJECT	CO 4	Answer queries posted by the listeners
CS 451	PRILIMINARY	CO 5	Correct himself to improve presentation skills
		CO1	To implement the different Phases of compiler.
	COMPLER	CO2	To implement and test simple optimization techniques.
CS 431	DESIGN LAB	CO3	To give exposure to compiler writing tools
	DEDIGIVEIID	<u> </u>	identify the key process of Data mining and Warehousing
	DATA MINING	001	apply appropriate techniques to convert raw data into suitable format for practical data
	DATA WIINING	CO 2	mining tasks
CS402	ANDWAKENU USINC	CO 2	analyze and compare various classification algorithms and apply in appropriate domain
	USHIO		analyze and compare various classification algorithms and apply in appropriate domain

		CO 4	evaluate the performance of various classification methods using performance metrics
		CO 5	make use of the concept of association rule mining in real world scenario
		CO 6	select appropriate clustering and algorithms for various applications
		CO 7	extend data mining methods to the new domains of data
		CO 1	Demonstrate the role of individual components involved in a typical embedded system.
			Analyze the characteristics of different computing elements and select the most
		CO 2	appropriate one for an embedded system.
		CO 3	Model the operation of a given embedded system
			Substantiate the role of different software modules in the development of an embedded
		CO 4	system
	EMBEDDED	CO 5	Develop simple tasks to run on an RTOS
CS404	SYSTEMS	CO 6	Examine the latest trends prevalent in embedded system design.
		CO 1	Appreciate the common threats faced today
		CO2	Interpret the fundamental theory behind information security
	PRINCIPLES	CO3	Design a secure system
	OF	CO4	Identify the potential vulnerabilities in software
	INFORMATIO	CO5	Appreciate the relevance of security in various domains
CS 472	N SECURITY	CO6	Develop secure web services and perform secure E-transactions
		CO1	Identify the significance of implementing virtualization techniques
		CO2	interpret the various cloud computing models and services
		CO3	compare the various public cloud platforms and software environments
		CO4	apply appropriate cloud programming methods to solve big data problems
	CLOUD	CO5	appreciae the need of security mechanisms in cloud
CS468	COMPUTING	CO6	illustrate the use of various cloud services avaliable online
		CO1	Able to understand the significance of data science and its key functionalities
		CO2	Understand various models suitable for data science
	DATA	CO3	Able to perform preliminary statistical analysis using R language on simple data sets
CS 466	SCIENCE	CO4	perform python-based predication and filtering on simple data sets

			CO5	Understand and perform Hadoop and Map-Reduce for data analysis
			CO6	Understand and perform data visualization techniques at a basic level
			CO1	Get general idea about hazards and disaster.
			CO2	Get general idea about earthquakes and landslides.
			CO3	Get general idea about floods and coastal disaster.
		DISASTER	CO4	Get general idea about Soil and soil degradation.
		MANAGEMEN		Understand the concept of disaster management and measures to mitigate and contain
	CE 488	Т	CO5	common episodes of disasters.
			CO1	Apply fundamental and disciplinary concepts and methods in ways appropriate to their principal areas of study
			CO2	Think innovatively on the development of components, products, processes or technologies in the engineering field
	CS 492	PROJECT	CO3	Apply knowledge gained in solving real life engineering problems
		MATHEMATI		
		CAL		
		FOUNDATION		
		S OF COMPLITING		
	01CS6101	SYSTEMS	CO 1	Conceptual understanding of the above topics and ability to apply them in practical situations.
	01000101		CO 1	To understand the implementation and management aspects of databases.
		DATABASE TECHNOLOG	CO 2	to understand the principles of distributed databases
			CO 3	To understand object based data models and their implementation.
	01CS6103	Y	CO 4	To understand the recent advances in database technology.
		ADVANCED	CO1	Get deep conceptual understanding of advanced data structures and their applications
		DATA	CO2	Understand the theory behind various classes of algorithms.
		STRUCTURES		
	01/56105	AND AI CORITHMS	CO3	be able to design, prove the correctness and analyze new algorithms
	01030103		$\frac{003}{001}$	To study the concepts and principles in Software Engineering
N/1	01000107	ADVANCED		To study the concepts and principles in Software Engineering.
IVII	0102010/	SULIWAKE		To concentrate on engineering principles to apply for building quality software.

		ENGINEERIN	CO 3	To design a software
		G	CO 4	To create a reliable software
			CO 5	To provide the necessary methods for testing the software.
				To get deeper understanding of principles and techniques and algorithms for digital
		IMAGE	CO 1	image processing
10	CS6157	PROCESSING	CO 2	Be able to apply these techniques in practical scenarios
		ALGORITHM		
		DESIGN		
02	1CS6193	LABORATORY	CO1	Can able to implement various advanced data structure Algorithms
		RESEARCH	CO1	Understand research concepts in terms of identifying the research problems
		METHODOLO	CO2	Propose possible solutions based on research
01	1CS6999	GY	CO3	Write a technical paper based on findings
			CO1	To identify the current topics in the specific stream
			CO2	Collect recent publications related to identified topics
				Do a detailed study of a selected topic based on current journals, published papers and
			CO3	books
			CO4	Present a seminar on the selected topic on which a detailed study has been done
02	1CS6191	SEMINAR I	CO5	Improve the writing and presentation skills
			CO1	Indepth knowledge in Measuring performane of processors
		PARALIFI	CO2	Indepth knowledge in Instruction level parallelism
		COMPUTER	CO3	Indepth knowledge in Vector Architecture
		ARCHITECTU	CO4	Indepth knowledge in Multiprocessor systems and cache coherence
0	1CS6102	RE	CO5	Indepth knowledge in Interconnection networks
			CO 1	Understand basic concepts of process management, scheduling and system calls in Linux
				Understand interrupts and interrupt handlers, bottom halves and understand the way in
			CO 2	which the different constructs are used
		OPERATING	CO 3	Understand different kernel synchronization methods
		SYSTEM	CO 4	Understand Timers and Time Management, Jiffies,, Memory Management, Slab layer
M2 0	1CS6104	DESIGN	CO 5	Understand the Block I/O Layer, I/O Schedulers and portability

				Understand Distributed processing, Distributed process management, distributed mutual
			CO 6	exclusion and distributed deadlock
			CO 1	To impart a deeper understanding of protocols, quality of service
		ADVANCED	CO 2	Understand about congestion management, wireless transmission and compression
		COMPUTER	CO 3	To analyze the issues of transmitting real time data
	01CS6104	NETWORKS	CO 4	To identify the technologies that can transmit data efficiently
			CO 1	Understand basic concepts in Artificial Neural Networks
			CO 2	Understand basic concepts in Fuzzy Logic
		SOFT	CO 3	Understand basic concepts in Genetic Algorithm
	01CS6154	COMPUTING	CO 4	Able to apply soft computing techniques to research problems
				Awareness of the different forms of IPR's and related rules and regulations, and of the
			CO1	laws applicable to computer and software related contracts.
				Exposure to different forms of Cyber crimes and the Indian and International laws to
		CYBER LAWS	CO2	combat Cyber crimes and facilitate e-commerce.
	01CS6176	AND ETHICS	CO3	Capability to reason out different situations of ethics faced in the cyber world.
		MINI		
	01CS6192	PROJECT	C01	To design and develop a system or application in the area of their specialization
		NETWORK	CO 1	Identify and solve various problems associated with designing and implementing a system or
	01006104	NETWORK		application.
	01050194	AND US LAB	02	Test the designed system or application.
			CO 1	building blocks for them
				Define and explain the essential challenges of resource constrained WSN design and
		ADHOC AND		implementation, including applications, interfaces, energy efficient protocols and
		SENSOR	CO 2	platform functionalities.
	01CS7157	NETWORKS		
		ADVANCED		Explain and exemplify to the different stages of planning a software project and
		SOFTWARE	CO1	managing it
M3	01CS7177	PROJECT	CO2	Capability to plan a large software project and to effectively monitor and control it.

		MANAGEMEN T		
			CO 1	Get good exposure in the current topics in the specific stream
			CO 2	Improve the writing and presentation skills.
	01CS7191	SEMINAR II	CO 3	Explore domains of interest so as to pursue the course project.
		PROJECT	CO 1	Identify the topic, objectives and methodology to carry out the project.
	01CS7193	PHASE I	CO 2	Finalize the project plan for their course project.
	01CS	PROJECT	CO 1	Get a good exposure to a domain of interest.
M4	7194	PHASE II	CO 2	Get a good domain and experience to pursue future research activities.