SEMESTER	SUBJECT CODE	SUBJECT NAME	CO No.	COURSE OUTCOMES
			CO1	Solve systems of linear equations, diagonalize matrices and characterise quadratic forms.
			CO2	Cmpute the partial and total derivatives and maxima and minima of multivariable functions
	MAT 101	LINEAR ALGEBRA AND	CO3	Compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas
		CALCULUS	CO4	Perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent
			CO5	Determine the Taylor and Fourier series expansion of functions and learn their applications.
			CO1	Compute the quantitative aspects of waves and oscillations in engineering systems.
	PHT 100	ENGINEERIN G PHYSICS A	CO2	Apply the interaction of light with matter through interference, diffraction and identifythese phenomena in different natural optical processes and optical instruments
S1			CO3	Analyze the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics to perceive the microscopic processes in electronic devices.
			CO4	Classify the properties of magnetic materials and apply vector calculus to static magnetic fields and use Maxwell's equations to diverse engineering problems
			CO5	Analyze the principles behind various superconducting applications, explain the working of solid state lighting devices and fibre optic communication system
			CO1	Recall principles and theorems related to rigid body dynamics
			CO2	Identify and describe the components of system of forces acting on the rigid body
	EST 100	ENGINEERIN G MECHANICS	CO3	Apply the conditions of equilibrium to various practical problems involving different force system
			CO4	Choose appropriate theorems, principles or formulae to solve problems of mechanics
			CO5	Solve problems involving rigid bodies , applying the properties of distributed areas and masses
	EST 120	BASICS OF CIVIL &	CO1	Recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.

	MECHANICAL ENGINEERIN	CO2	Explain different types of buildings, building components, building materials and building construction
	\mathbf{G}	CO3	Describe the importance, objectives and principles of surveying.
		CO4	Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps
		CO5	Discuss the Materials, energy systems, water management and environment for green buildings.
		CO1	Define and Identify different life skills required in personal and professional life
		CO2	Develop an awareness of the self and apply well-defined techniques to cope with emotions and stress.
HUT 101	LIFE SKILLS	CO3	Explain the basic mechanics of effective communication and demonstrate these through presentations.
		CO4	Take part in group discussions.
		CO5	Use appropriate thinking and problem solving techniques to solve new problems
		CO6	Understand the basics of teamwork and leadership
		CO1	Develop analytical/experimental skills and impart prerequisite hands on experience forengineering laboratories
		CO2	Understand the need for precise measurement practices for data recording
PHL 120		CO3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations
	LAB	CO4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics
		CO5	Develop basic communication skills through working in groups in performing the laboratoryexperiments and by interpreting the results
		CO1	Name different devices and tools used for civil engineering measurements
	CIVIL & MECHANICAL WORKSHOP	CO2	Explain the use of various tools and devices for various field measurements
ESL 120		CO3	Demonstrate the steps involved in basic civil engineering activities like plot measurement, setting out operation, evaluating the natural profile of land, plumbing and undertaking simple construction work.

			CO4	Choose materials and methods required for basic civil engineering activities like field measurements, masonry work and plumbing.
			CO5	Compare different techniques and devices used in civil engineering measurements
			CO6	Identify Basic Mechanical workshop operations in accordance with the material and objects
			CO7	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades
			CO8	Apply appropriate safety measures with respect to the mechanical workshop trades
		ALE CELO D	CO1	Compute the derivatives and line integrals of vector functions and learn their applications.
		VECTOR	CO2	Evaluate surface and volume integrals and learn their inter-relations and applications.
	MAT102	CALCULUS, DIFFERENTIA L EQUATIONS	CO3	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients .
		AND	CO4	Compute Laplace transform and apply them to solve ODEs arising in engineering .
	· ·	TRANSFORMS	CO5	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering .
			CO1	Apply the basic concepts of electrochemistry and corrosion to explore its possible applications in various engineering fields.
		ENGINEERIN G CHEMISTRY	CO2	Understand various spectroscopic techniques like UV-Visible, IR, NMR and its applications.
S2	CYT100		CO3	Apply the knowledge of analytical method for characterizing a chemical mixture or a compound. Understand the basic concept of SEM for surface characterisation of nanomaterials.
			CO4	Learn about the basics of stereochemistry and its application. Apply the knowledge of conducting polymers and advanced polymers in Engineering.
			CO5	Study various types of water treatment methods to develop skills for treating wastewater
		110 ENGINEERIN G GRAPHICS	CO1	prepare multi view orthographic projections of objects by visualising them in different quadrants
	EST110		CO2	draw sectional views and develop surfaces of the Given object
	G		CO3	draw pictorial drawing using isometric principles and perspective projections to visualise objects in 3D

		CO4	convert 3D to orthographic view and vice-versa
		CO5	obtain multiview projections and solid models of objects using CAD tools
	P 4 GIGG OF	CO 1	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady
	BASICS OF ELECTRICAL	CO 2	Develop and solve models of magnetic circuits
EST 130	ENGINEERIN	CO 3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady
	G/BASIC	CO 4	Describe working of a voltage amplifier
	ELEC:ENGG	CO 5	Outline the principle of an electronic instrumentation system
		CO 1	Develop vocabulary and language skills relevant to engineering as a profession
		CO 2	Analyze, interpret and effectively summarize a variety of textual content
	PROFESSION	CO 3	Create effective technical presentations
HUT102	AL COMMUNICA TION	CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at generalizations/consensus
		CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs
		CO 6	Create professional and technical documents that are clear and adhering to all the necessary conventions
		CO1	Analyze a computational problem and develop an algorithm/flowchart to find its solution
	PROGRAMMI NG IN C	CO 2	Develop readable C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators
EC/2102		CO 3	Write readable C programs with arrays, structure or union for storing the data to be processed
EST102		CO 4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem
		CO 5	Write readable C programs which use pointers for array processing and parameter passing
		CO 6	Develop readable C programs with files for reading input and storing output
ONT 400	ENGINEERIN G	CO1	Understand and practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses
CYL120	CHEMISTRY LAB	CO2	Develop skills relevant to synthesize organic polymers and acquire the practical skill to use TLC for the identification of drugs

			CO3	Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing and interpreting the IR spectra and NMR spectra of some organic compounds
			CO4	Acquire the ability to understand, explain and use instrumental techniques for chemical analysis
			CO5	Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
			CO6	Function as a member of a team, communicate effectively and engage in further learning. Also understand how chemistry addresses social, economical and environmental problems and why it is an integral part of curriculum.
			CO1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits
		ELECTRICAL/	CO2	Develop and solve models of magnetic circuits
	ESL 130	ELECTRONIC S ENGINEERIN G WORKSHOP	CO3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady state
			CO4	Describe working of a voltage amplifier
			CO5	Outline the principle of an electronic instrumentation system
			CO6	Explain the principle of radio and cellular communication
		LINEAR	CO1	To equip the students with methods of solving a general system of linear equations.
		ALGEBRA AND	CO2	To familiarize them with the concept of Eigen values and diagonalization of a matrix which have many applications in Engineering.
	MA 201	COMPLEX ANALYSIS	CO3	To understand the basic theory of functions of a complex variable and conformal Transformations.
			CO1	Students will be able to apply circuit theorems to simplify and solve complex DC and AC electric networks.
			CO2	Students will be able to apply graph theory in solving networks.
			CO3	Students will be able to to apply Laplace Transform to find transient response.
		CIRCUITS AND	CO4	Students will be able to develop the representation of two-port networks using network parameters and analyse.
S3	EE 201	NETWORKS	CO5	Students will be able to gain the capability to synthesize a circuit for a particular purpose.

		CO1	Students will be able to design bissing scheme for transistor circuits
			Students will be able to design biasing scheme for transistor circuits
		CO2	Students will be able to model BJT and FET amplifier circuits
		CO3	Students will be able to choose a power amplifier with appropriate specifications for electronic circuit applications
		CO4	Students will be able to design & analyse oscillator circuits using BJT
	ANALOG ELECTRONIC	CO5	Students will be able to choose Operational amplifier(OPAMP) for specific applications including waveform generation
EE 203	S CIRCUITS	CO6	Students will be able to design & implement analog circuits using OPAMPs
		CO1	Students will be able to recall, write and recognize different types of DC machines and transformers.
		CO2	Students will be able to explain the working of DC machines and transformers.
	DC	CO3	Students will be able to analyze, justify and compare the functioning of DC machines and transformers in different working conditions
	_	COS	ÿ
	MACHINES AND	CO4	Students will be able to combine different basic principles of electrical engineering to apply on a practical situation
	TRANSFORM		Students will be able to identify and choose DC machines and transformers for different
EE 205	ER	CO5	purposes and applications
	COMPUTER	CO1	To impart knowledge about programming in C
	PROGRAMMI	~~	
EE 207	NG	CO2	To learn basics of PYTHON.
		CO1	Understand elementary principles of Economics and Business Economics.
		CO2	Analyze the various market situations with good grasp on the effect of trade cycle.
		CO3	Analyze the basic macro-economic concepts and monetary theory.
		CO4	Understand macro- economic concepts to improve their ability to analyses the business climate
HS 200	BUSINESS ECONOMICS	CO5	Analyze their employability by combining their technical knowledge with appropriate economic model
EE 231		CO6	Attain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheets.

			CO2	Students will be able to explain the working of electronic circuit.
		ELECTRONIC	CO3	Students will be able to the analyze an electronic circuit
		CIRCUITS	CO4	Students will be able to create electronic circuits using multisim
		LAB	CO5	Students will be able to select and implement analog circuits using OPAMPs for a particular application
	EE 233	PROGRAMMI NG LAB	CO1	To impart knowledge and skills in programming
			CO1	To learn most of the important models of discrete probability distributions.
		PROBABILITY DISTRIBUTIO	CO2	To learn most of the important models of continuous probability distributions.
		NS, TRANSFORMS	CO3	To learn most of the important models of JOINT discrete and continuous probability distributions.
		AND NUMERICAL	CO4	To introduce the modern theory of probability and its applications to modelling and analysis and processing of random processes and signals.
	MA 204	METHODS	CO5	To learn Poisson processes and Markov Chains.
			CO1	Students will be able to differentiate the different types of Synchronous machines and types of AC armature windings.
			CO2	Students will be able to demonstrate knowledge on importance of Voltage regulation of Alternators and how to pre-determine the voltage regulation of Synchronous machines in laboratory.
			CO3	Students will be able to acquire knowledge on how Alternators can be paralleled to Infinite bus and how loads can be shared.
			CO4	Students will be able to understand all about Synchronous Motors and applications of various starting methods. Students will be able to differentiate the different types of Induction machines
		SYNCHRONO	CO5	Ability to analyse the performance of induction machines inorder to implement in household and industrial applications.
	EE 202	US AND INDUCTION MACHINES	CO6	Will acquire knowledge on performance characteristics of synchronous induction motors relating the features of synchronous machines and induction machines. Ability to differentiate different types of single phase Induction motors
		DIGITAL	CO1	Students will be able to distinguish the different number systems and be able to convert from one form to other.
S4	EE204	ELECTRONIC	CO2	Students will be able to use the laws of Boolean algebra to simplify circuits.

	S AND LOGIC	CO3	Students will be able to design combinational and sequential circuits.
	DESIGN	CO4	Students will be able to define the significance of state machines.
		CO5	Students will be able to interpret programmable logic circuit devices and it's usage.
		CO1	To describe the characterestics of conducting and semi conducting materials
		CO2	To classify magnetic materials and describe different laws related to them
		CO3	To classify different insulators and explain behaviour of dielectrics
		CO4	To describe mechanisms of BD in solids, liquids and gases
	MATERIAL	CO5	To describe solar energy materials and superconducting materials
EE 206	SCIENCE	CO6	Gain knowledge in modern Techniques for material studies
		CO1	Compare different types of instruments, their working principles advantages and disadvantages.
		CO2	Explain the operating principles of various ammeters, voltmeters and ohm meters
	MEASUREME	CO3	Measure single phase & three phase power using wattmeters.
	NTS AND	CO4	Summarize different flux and permeability measurements methods
	INSTRUMENT	CO5	Differentiate AC potentiometers and bridges
EE 208	ATION	CO6	Explain the working and applications of cathode ray oscilloscope
		CO1	Communicate Effectively
		CO2	Make Effective Presentations
		CO3	Write different types of reports
		CO4	Face Interview and Group Discussion
		CO5	Critically think on a particular problem
		CO6	Solve Problems
		CO7	Work in groups and teams
		CO8	Handle engineering ethics and human values
HS 210	LIFE SKILLS	CO9	Become an effective leader
	ELECTRICAL MACHINES	CO1	Students will be able to predict the performance of DC machines and Transformers using standard equivalent circuit models
EE 232	LAB 1	CO2	Students will be able to select the appropriate machines based on the application requirements

			CO3	Students will be able to illustrate laboratory data and experimental results using graphical representations
			CO4	Students will work in teams to conduct experiments, analyze results, and develop technically sound reports of outcomes
			CO5	Students will be able to identify faults occurring in machines and take necessary corrective measures
			CO1	Analyse voltage current relations of RLC circuits
			CO2	Verify DC network theorems by setting up various electric circuits.
			CO3	Measure power in a single and three phase circuits by various methods
			CO4	Calibrate various meters used in electrical systems
			CO5	Determine magnetic characteristics of different electrical devices
		CIRCUITS	C06	Analyse the characteristics of various types of transducer systems
		AND	CO7	Determine electrical parameters using various bridges
	EE234	MEASUREME NTS LAB	CO8	Analyse the performance of various electronic devices for an instrumentation systems and, to develop the team management and documentation capabilities.
			CO1	Know the various conventional and non conventional method of power generation and the concepts of economics of power generation
			CO2	Understand the various transmission line parameters and line constants
		POWER	CO3	know the mechanical design of overhead lines and underground cables.
		GENERATION	CO4	Understand about HVDC, FACTS and various types of distribution systems.
		TRANSMISSIO	CO5	Understand the need of powersystem protection and protective relays
	EE301	N & PROTECTION	CO6	Know about the protection of alternators transformers, transmission lines and also the causes of over voltages
	_		CO1	Students will be able to explain the various practices of modelling physical systems.
			CO2	Students will be able to differentiate between various control system components and will be able to explain the time domain specifications.
		LINEAR	CO3	Students will be able to develop basic knowledge in error and stability analysis
S5	EE 303	CONTROL SYSTEMS	CO4	Students will be able to compare and analyse the stability of the systems - thereby having a more realistic approach towards the design of Control systems

			Students will be able to classify and understand the various frequency domain analysis
		CO5	techniques in control systems.
		CO1	Students will be able to choose appropriate power semiconductor device in converter circuits and develop their triggering circuits.
	POWER	CO2	Students will be able to analyze various types of power electronic converters and apply different switching techniques
	ELECTRONIC	CO3	Students will be able to select appropriate power converter for specific applications
EE 305	S	CO4	Students will be able to interpret and use datasheets of power semiconductor devices for design.
		CO 1	
		CO 2	Students will be able to analyse the continuois time systems with Laplace Transform
		CO 3	Students will be able to represent and analyse signals using Fourier representation
		CO 4	Students will be able to analyse the discrete time signals using Z Transform
EE 307	SIGNALS AND SYSTEMS	CO 5	Students will be able to analyse the DT systems with DFS and acquire basic knowledge in non linear system
		CO1	Student is able to describe different addressing modes of operations of a typical 8085 microprocessor
		CO2	Student is able to design and develop 8085 assembly language programs using software interrupts and various assembler directives.
		CO3	Student is able to develop Interface microprocessors with Devices like ADC, LED, DAC
	MICROPROCE SSOR AND	CO4	Student is able to analyze and compare the features of microprocessors and microcontrollers.
EE 309	EMBEDDED SYSTEMS	CO5	Student is able to design and develop assembly language programs using 8051 microcontroller
		CO1	Students will be able to recognize and understand the world and Indian energy scenario and necessity of sustainable development utilising Renewable Energy recourses
	NEW AND	CO2	Students will be able to analyse and infer the potentials and design systems based on solar thermal systems.
	RENEWABLE	CO3	Students will be able to illustrate, design and implement solar electric systems.
EE 367	ENERGY SYSTEMS	CO4	Students will be able to understand the fundamentals and interpret basic components of energy from the ocean

			CO5	Students will be able to understand the fundamentals and interpret basic components of energy from the wind
			CO6	Students will be able to understand the fundamentals and interpret basic components of energy from the biomass and emerging technologies
			C01	Design, setup and analyse various digital circuits.
		DIGITAL CIRCUITS	CO2	Students will be able to program and explain 8085 microprocessor for different applications
		AND	CO3	Students will be able to program and use advanced microprocessors
		EMBEDDED	CO4	Students will be able to program and interface 8051 microcontroller
	EE 331	SYSTEMS	CO5	Students will be able to combine different system for a practical applications
			CO1	Students will be able to understand various starting methods and to select appropriate machines based on the application requirements.
			CO2	Students will be able to predict the performance of Induction machines using standard equivalent circuit models.
			CO3	Students will be able to obtain various losses in electrical machines so that they can able to adopt methods to improve efficiency.
		ELECTRICAL MACHINES	CO4	Students will be able to understand various regulation methods that can be adopted in Alternators
	EE 333	LAB II	CO5	Student will be able to understand performance of Synchronous motor in various load conditions.
			CO1	Students will be able to design compensators in time domain
			CO2	Students will be able to design compensators in frequency domain
			CO3	Students will be able to acquire the fundamental knowledge about state space modelling
		ADVANCED		Students will be able to design controllers and observers and thereby acquire full
		CONTROL	CO4	knowledge about the stability of systems
	EE304	THEORY	CO5	students will be able to acquire knowledge about the nonlinear systems
			CO1	concepts of fault analysis using symmetrical and sequence networks
			CO2	Compute symmetrical and unsymmetrical fault studies
		POWER	CO3	Load flow solution using different iterative methods
		SYSTEM	CO4	Modelling of single and two area system of frequency control
S6	EE306	ANALYSIS	CO5	Study of economics of load despatch

			CO6	Studu of steady and transient stability in the power system network
			CO1	Define different coordinate system and apply them to analyze fields & potentials due to static charges
			CO2	Explain the physical meaning of the differential equations for electrostatic and magnetic fields.
			CO3	Understand how materials are affected by electric and magnetic fields.
			CO4	Understand the relation between the fields under time varying situations.
		ELECTROMA	CO5	Understand principles of propagation of uniform plane waves
	EE302	GNETICS	CO6	Be aware of electromagnetic interference and compatibility
			CO1	Students will be able to analyse a drive being applied in 4 different quadrants
			CO2	Students will be able to apply drives being used in real applications
			CO3	Students will be able to understand the various speed control techniques used in the control of the machine.
		ELECTRIC	CO4	Students will be able to to understand the concept for DC drive
	EE 308	DRIVES	CO5	Students will be able to to understand the concept of speed control for AC drives
			CO1	To recall and identify the relavance of management concepts
			CO2	To discribe, discuss and relate management techniques adopted within an organization.
			CO3	To apply management techniques for meeting current and future management challenges faced by an organization.
		PRINCIPLES	CO4	To compare the management theories and models critically and to inspect and question its validity in the real world.
		OF MANAGEMEN	CO5	To access and modify different theories of management so as to relate it to current management challenges.
	HS 300	T	CO6	To apply principles of management inorder to execute the role as a manager.
Γ			CO1	To provide an introduction to BMI
		BIOMEDICAL	CO2	To provide an introduction to biopotential electrodes
		INSTRUMENT	CO3	To give awareness of measurement of blood pressure and heart sounds
	EE372	ATION	CO4	To give insight of cardiac pacemakers, defibrillators, EEG, EMG, etc

			CO5	To provide awareness of ventilators, X-rays, MRI etc.
			CO6	To gain knowledge in instruments for lab, safety, shock hazards and tele medicine
		** * * * * * * * * * * * * * * * * * *	CO1	Understand the fundamentals and architectural design of Illumination Engineering.
		ILLUMINATIO N	CO2	Enable to understand the design of interior lighting
		TECHNOLOG	CO3	Understand the design of Outdoor lighting.
	EE 366	Y	CO4	Understand various aspects of Aesthetic Lighting.
		ELECTRONIC COMMUNICA TION	CO1	Understand the need of modulation in transferring a signal through either wireless or wired communication systems
	EE401		CO2	Be able to apply analog modulation techniques and receiver fundamentals in analog communication.
			CO3	Be to apply baseband digital encoding & decoding techniques in the storage / transmission of digital signal through wired channel
			CO4	Understand the basic concept of cellular and satellite communication systems
			CO5	Understand the performance of communication systems in the presence of noise and interference
S7	EE403	DISTRIBUTED GENERATION &SMART GRIDS	CO1	Understand the concepts of microgrid, smartgrid and various distributed generation systems.
31			CO2	Understand the different types of storage devices and the control schemes of microgrids.
			CO3	Explain the Smart grid architecture, Smart sensors and tariff
			CO4	Understand the various aspects of energy management.
			CO5	Explain the different substation automation schemes and architecture.
			CO6	Explain the aspects of power quality and understand the sources of harmonics
	EE405	ELECTRICAL SYSTEM DESIGN	CO1	Get aware of the Acts and rules regulating the design of electrical systems in India.
			CO2	Understand the design and testing of domestic installations as per NEC guidelines.
			CO3	Understand the design of industrial installations and substations upto 630 kVA
			CO4	Design the earthing of substations up to 630 kVA and to get aware of pre-commissioning tests to be conducted in cables and transformers.

			CO5	Design of interior and exterior illumination systems. Design requirements of high rise buildings and recreational buildings.
			CO6	Know the various energy conservation techniques in lighting and power. Selection of standby generator .Introduction to Automatic Main Failure and solar PV systems.
			CO1	analyse DT systems with DFT
		DIGITAL	CO2	Design digital filters
	EE407	SIGNAL	CO3	analyse finite word length effects
		PROCESSING	C04	understand digital Signal processors and their applications
			CO5	understand Matlab FDA toolbox
			C01	Interpret electrical and magnetic design considerations of Electrical machines.
		ELECTRICAL MACHINE DESIGN	CO2	Design single and three phase transformers with respect to core dimensions and windings
			CO3	Design DC machines based on main dimensions and field winding design
	EE409		CO4	Design of synchronous machines with respect to its main dimensions and turbo alternators.
			CO5	Design of three phase inductions motors with respect to main dimensions and end rings
			CO6	Explanation of CAD and FEM
		ELECTRIC HYBRID VEHICLES	CO1	Design and develop basic schemes of electric vehicles and hybrid electric vehicles
	EE469		CO2	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources
	EE469		CO3	Choose proper energy storage systems for vehicle applications
			CO4	Identify various communication protocols and technologies used in vehicle networks.
		POWER SYSTEM LAB	CO1	impact practical knowledge about various Power system components
			CO2	acquire knowledge about the operation of power system
	EE431		CO3	simulate the power system operations which will be helpful in the design of power systems
			CO4	introduce the various testing procedures in power system
_		E402 SPECIAL	CO1	Identify alternator types, and appreciate their performance
S8	EE402		CO2	Determine the voltage regulation and analyze the performance of alternators
			CO3	Describe the principle of operation of synchronous motor and different applications

		ELECTRIC MACHINES	CO4	Describe the principle of operation of 3-phase induction motors and select appropriate motor types for different applications
				Analyse the performance of 3-phase induction motors
		INDUSTRIAL	CO1	Familiarize with principle of operation and application of 1-phase induction motors
	· · · ·	INSTRUMENT	CO2	Select instruments and transducers for measurement of various physical variables.
	EE404	ATION	CO3	Get an insight on data acquisition, processing and monitoring system
		&AUTOMATI ON	CO4	Design various signal conditioning systems for transducers.
		ON	CO5	Understand the concepts of virtual instrumentation and basic programming logic of PLCs
			CO 1	Understand the concepts of energy management and energy management opportunities. Various methods of peak demand control and optimal load scheduling
		ENERGY	CO 2	Enable to understand the various energy conservation opportunities in boiler.
	EE406	MANAGEMEN T*AUDITING	CO 3	To understand various energy conservation opportunities in HVAC systems. Energy saving opportunities of waste heat recovery.
			CO 4	To understand various aspects of Energy Auditing and various Procedures.
			CO 5	To Know different methods used for the economic analysis of various energy projects
		DISASTER	CO1	The students will get general ideas about the processes involved in natural disasters
	CE488		CO2	The students will get general ideas about the processes involved in anthropogenic disasters
	CE400	MANAGEMEN T	CO3	The students will understand the concepts of disaster management
		1	CO4	The students will understand the measures to mitigate and contain common episodes of disasters
			CO1	
			CO2	
		Advanced Mathematics & Optimization	CO3	
			CO4	
	01MA6021	Techniques	CO5	
		Dynamics of	CO1	To provide a strong foundation on classical and modern control theory
M1	01EE6101	Linear Systems	CO2	To provide an insight into the role of controllers in a system

		CO3	To design compensators using classical methods
		CO4	To design controllers in the state space domain
		CO5	To impart an indepth knowledge in observer gain
		CO1	Introduce the concepts of digital control of dynamic systems
		CO2	To design dynamic systems using transform techniques and state space methods
		CO3	To design compensators using classical methods and analysis of closed loop stability
		CO4	To impart indepth knowledge in state space design of digital controllera and observers
01EE6103	Digital Control Systems	CO5	To analyse the system performance and stability aspects with controllers and observers in closed loop
	-	CO1	Students will be able to develop a deep knowledge of Power Semiconductor Devices, Power Electronic Circuits and their applications.
		CO2	Students will be able to analyse AC/DC and DC/AC converters
		CO3	Students will analyse DC/DC converters
		CO4	Students develop skills to use Power Electronic Circuits in energy conversion system
01EE6303	Power Electronic Circuits	CO5	Students will acquire skills to apply Power Electronic Circuits in Power Converters to improve the performance and efficiency.
		CO1	students will have knowledge of standard atmosphere
		C02	to induct fundamental concepts of basic aerodynamics and aerodynamic shapes
		C03	general idea of airplane performance
	Introduction to	C04	to get general awareness about stability and control
01EE6203	Flight	C05	to study about aerodynamic performances
		CO1	Understand research concepts in terms of identifying the research problems
	Research	CO2	Propose possible solutions based on research
01EE6999	Methodology	CO3	Write a technical paper based on findings
		CO1	Identifying the current topics in the specified stream
		CO2	Collect the recent publications related to the identified topics
01EE6191	Seminar I	CO3	Do a detailed study of a selected topic based on current journals, published papers and books

			CO4	Present a seminar on the selected topic on which a detailed study has been done
			CO5	Improve the writing and presentation skills
			CO1	Students will be able to analyse systems using classical and modern control theory using MATLAB/SIMULINK
			CO2	Students will be able to design, simulate and evaluate control systems
			CO3	Students will be able to design & fine tuning of PID controller and familiarize the roles of P, I and D in feedback control
		Design &	CO4	Students will be able to acquire ability to critically analyze different dynamic systems and choose a suitable controller.
	01EE6193	Simulation Lab	CO5	Students will be able to get exposure to aspects of control systems design.
			CO1	To choose a suitable performance measure to meet the specific requirements for a typical optimal control problem
			CO2	To equip the students to formulate optimal control problems
			CO3	Familiarize the concepts of calculus of variation
			CO4	To analyse the physical system by applying constrained optimisation
	01EE6102	Optimal Control Theory	CO5	To design the controller by optimizing the suitable performance criteria by satisfying the constraints over the state and inputs.
		v	CO1	To study the essentials of non linear system
			CO2	To understand the behaviour of systems that can be described by non linear ordinary differential equations
			CO3	To extend the analysis technique for classical control theory to non linear system
		Nonlinear	CO4	To analyse the physical system with inherent no linearity for stability and performance
	01EE6104	Control Systems	CO5	To provide the necessary methods for designing controller for non linear systems
		New and	CO1	Students will be able to recognize and understand the world and Indian energy scenario and necessity of sustainable development utilising Renewable Energy recourses
		Renewable Sources of	CO2	Students will be able to analyse and infer the potentials and design systems based on solar thermal systems
M2	01EE6412	Energy	CO3	Students will be able to illustrate, design and implement solar electric systems

		CO4	Students will be able to understand the fundamentals and interpret basic components of energy from the ocean
		CO5	Students will be able to understand the fundamentals and interpret basic components of energy from the wind
		CO6	Students will be able to understand the fundamentals and interpret basic components of energy from the biomass and emerging technologies
		CO1	To give explanation of history and emergence of sustainable development
		CO2	To give awareness of industrialization and globalisation
		CO3	To make aware of Global environmental issues
	Sustainable and	CO4	To get an idea of wasteland reclamation
	Translational	CO5	To give an insight of different energy sources
01EE6432		CO6	To be able to give description of Green buildings, Green Engineering, Industrial Ecology etc.
		CO1	to be able to develop the point mass model of an aircraft
		C02	to be able to understand the Dynamics of an aircraft
	Flight Dynamics	CO3	to analyse the performance of aircrafts
01EE6214		C04	to be able to analyse the stability issues of an aircr aft
		CO1	to be capable of designing and developing system prototypes
		CO2	to be able for utilizing latest softwares and equipments
		CO3	Intellectual capability and innovative thinking of the students are ignited
01EE6192	Mini Project	CO4	Students are facilitated to probe into or identify technical issues
		CO1	Realise different compensators
		CO2	Familiarize P,PI and PID controllers
		CO3	Design and implement PID controller and familiarize the role of P,I and D in fredback controller
			Practice of control system design in inverted pendulum system which is widely used as a
	Advanced	CO4	benchmark for testing control algorithm
01EE6194	Control Lab	CO5	Implementation of real time controller for dynamic systems
M3 01EE7111	Robust Control	CO1	students will be able to Identify different uncertainties and to model the uncertainties

			CO2	students will be able to apply different approaches for analysing robust stability and robust performance
			CO3	students will be able to design robust controllers for physical systems and compare with other controllers
			CO1	TO give an idea of human physiology and different type of Transducers
			CO2	To give awareness of electrical potentials and biomaterials used in BMI
			CO3	To get knowledge in measurement of electrical activities and ECG,EEG,EMG etc
			CO4	To get insight of measurement of blood flow and Therapeutic equipment
		Biomedical	CO5	T o get idea about BMI signal processing and image processing
	01EE7121	Instrumentation	CO6	To give deep knowledge in Instrumentation for clinical laboratory
			CO1	Student should be able to identify the topic, objectives and methodology to carry out the project.
	01EE7191	Project Phase 1	CO2	Student should be able to finalize the project plan for their course project.
			CO1	Student should be able to get good exposure in the current topics in the specific stream.
			CO2	Student should be able to improve the writing and presentation skills.
	01EE7193	Seminar	CO3	Student should be able to explore domains of interest so as to pursue the course project.
			CO1	Student should be able to get a good exposure to a domain of interest.
M4	01EE7194	Project Phase II	CO2	Student should be able to get a good domain and experience to pursue future research activities.